Showing posts with label battery. Show all posts
Showing posts with label battery. Show all posts

Scalable 12V Solar Power System and Battery Charge Controller

Friday, September 26, 2014 | Labels: , , , , , , , , | 0 comments |
An unconventional, scalable high efficiency 12V solar power system and battery charge controller with low voltage cutout to protect the battery. (ideal for systems of 50W or less). The most common solar charger consists of a Schottky diode to prevent the battery from draining into the PV panel and a shunt regulator that effectively short circuits the panel once the battery is fully charged.

Scalable 12V Solar Power System and Battery Charge Controller

One problem with this approach is diode losses and the resulting heat. If a 50W 12V panel supplies 4A to the battery, the Schottky diode will drop about 0,4V across it dissipating about 1,6W of heat. This requires a heat sink and loses power to heat. The problem is that there is no way of reducing the volt drop, paralleling diodes may share current, but the 0,4V will still be there. The circuit uses a MOSFET in stead of the usual diode and the primary power loss is resistive. [Link]
Continue reading...

A Li Ion Battery Charger with Load Sharing MCP73837

| Labels: , , , , , , , , | 0 comments |
Batteries often serve as the main energy source for portable electronic devices. Although they depend on batteries, portable consumer electronic products, such as GPS devices and multi-media players, often consume energy directly from an ac-dc wall adapter or accessory power adapter (or “Auto Adapter”) when the battery is low or the device is in a stationary mode. Due to their cost effectiveness over their useful life, rechargeable batteries are often used for the power source of the portable electronic device.


Designing A Li-Ion Battery Charger with Load Sharing - MCP73837

 
Attributes such as “relatively high energy density” and “maintenance free” make Lithium-Ion (Li-Ion) batteries popular in the portable consumer electronic products. Refer to the application note, AN1088, “Selecting the Right Battery System For cost Sensitive Portable Applications While maintaining Excellent Quality” (DS01088) for characteristics of Li-Ion batteries. Some examples of how to properly design with Li-Ion batteries will be discussed in this application note. [Link]
Continue reading...

Tracking Battery Charger IC Supports Solar Power Systems

Tuesday, September 23, 2014 | Labels: , , , , , , , | 0 comments |
Individual solar-panel systems produce dc power for remote applications while also storing energy in a rechargeable battery supported by a battery-charger IC. In non-utility grid applications solar panels produce dc power for emergency roadside telephones, navigation buoys, and other remote loads. Virtually all 12-V-system solar panels comprise a series of photovoltaic cells that have a maximum output power of less than 25 W.
Power-Tracking Battery-Charger IC Supports Solar-Power Systems
In producing this power the solar-panel system uses a battery to provide power when the panel is “dark.” The rechargeable battery can supply power for long periods of time, requiring a charger that can properly operate a solar panel. Meeting this need is Linear Technology’s LT3652 monolithic buck-charger IC, which operates with a single solar panel.

The IC uses average-current-mode control-loop architecture to provide constant current/constant voltage (CC/CV) charge characteristics with a programmable charge current. The charger can be programmed to produce a 14.4-V float voltage. Housed in a 3- × 3-mm DFN-12 package, the IC can charge a variety of battery configurations, including up to three Li-Ion/Polymer cells in series, up to four Lithium Iron Phosphate (LiFePO4) cells in series, and sealed lead-acid batteries up to 14.4 V. [Link]
Continue reading...

To Rethink The Shape of The Battery

Wednesday, June 12, 2013 | Labels: , , , , , | 0 comments |


Now we use the batteries are circular, here the designers propose a new concept to design six-sided shape for battery, place the whole up and that is cellular, and compared to the gap of the round, its unique modeling can save a lot of packaging and shelf space, and because it is angular, it is not as round as we do not know where to roll when placing it on the desktop.
Continue reading...

Battery Powered Night Lamp

Monday, May 13, 2013 | Labels: , , , | 1 comments |
This circuit is usable as a Night Lamp when a wall mains socket is not available to plug-in an ever running small neon lamp device. In order to ensure minimum battery consumption, one 1.5V cell is used and simple voltage doublers drives a pulsating ultra-bright LED: current drawing is less than 500µA. An optional Photo resistor will switch-off the circuit in daylight or when room lamps illuminate, allowing further current economy.

This device will run for about 3 months continuously on an ordinary AA sized cell or for around 6 months on an alkaline type cell but, adding the Photo resistor circuitry, running time will be doubled or, very likely, triplicates. IC1 generates a square wave at about 4 Hz frequencies. C2 & D2 form voltage doublers, necessary to raise the battery voltage to a peak value able to drive the LED.
Continue reading...

Battery Equality Monitor

Thursday, April 11, 2013 | Labels: , , | 0 comments |

Almost all 24V power systems in trucks, 4WDs, RVs, boats, etc, employ two series-connected 12V lead-acid batteries. The charging system can only maintain the sum of the individual battery voltages. If one battery is failing, this circuit will light a LED. Hence impending battery problems can be forecast. The circuit works by detecting a voltage difference between the two series connected 12V batteries. Idle current is low enough to allow the unit to be permanently left across the batteries.
Circuit diagram:
battery_equality_monitor_schematic_circuit_diagramw
Battery Equality Monitor Circuit Diagram
Parts:
R1 = 2.K
R2 = 4.7K
R3 = 39K
R4 = 39K
R5 = 1.5K
R6 = 1.5K
Q1 = BC547
Q2 = BC547
Q3 = BC557
D1 = 3mm Red LED
D2 = 3mm GreenLED
B1 = DC 12 Volt
B2 = DC 12 Volt
 
streampowers
Continue reading...